

Amberg Survey IMS 1000 / 3000

As-built track survey at its best

Extension of a revolutionary measuring principle

- Long-chord method with only one measurement trolley for as-built survey
- Combined survey of relative and absolute track geometry
- Unrivalled survey performance up to 5000 m/h
- Repeat accuracy ± 1 mm
- Up to 90% cost savings compared to traditional methods
- Unlimited use during day and night, rain and bright sunshine
 no line of sight requirements
- Measurement of objects close to track

Modular system design

- Measuring trolley consisting of precision sensors for gauge, superelevation and distance and ruggedized notebook
- AMU 1030 (Amberg Measuring Unit) for unrivalled kinematic measurement precision
- Two different control point measuring devices:
- Total station (IMS 1000, fully automatic measurement)
- Profiler 110 FX (IMS 3000)
- Modular system upgrading possibilities

Global 3D topographic track survey

- Measuring performance up to 4000 m/h, typically 2500 m/h
- Absolute 3D control points given in global coordinate grid and used as transformation references
- \blacksquare Distance between CP measurements up to 500 m
- Fully compatible with other geodetic 3D survey data

Local 3D topographic track survey

- Measuring performance up to 4000 m/h, typically 2500 m/h
- Setup and survey of control points during initial track survey
- Track data available in local 3D coordinate grid
- Determination of local 3D coordinates for established control points
- Results can be used for local track design and track works as well as monitoring purposes

Relative track geometry survey

- Measuring performance up to 5000 m/h, typically 3500 m/h
- Stationing plates as references
- Measurement and calculation of track parameters horizontal versines (variable chord length), vertical versines (variable chord length), gauge, superelevation and twist
- Presentation and analysis of track data with sophisticated Track Geometry Record (TGR)

Front: Amberg IMS 3000 with Profiler 110 FX Back: Total station for Amberg IMS 1000

3D as-built survey with Amberg IMS 3000

Relative track geometry survey with Amberg IMS 1000

© 2018/07 Amberg Technologies AG / Figures, descriptions and specifications are non-binding. Subject to change.

Amberg Survey IMS 1000 / 3000

System performance and technical data

System configuration				
Gauge (mm)	1000, 1067, 1435, 1520/24,			
	1600, 1668/76			
Gauge measuring range (mm)	-25 to +65			
(re nominal gauge)				
Cross level (cant) at 1435 mm	+/- 260			
(mm)				
CP measuring device	Leica total Amberg			
	station MS50/60, TS50/60,TS30, TS15/16		Profiler	
			110 FX	
Weight total system (kg)	49	47		
incl. batteries, notebook, all				
measuring devices				
System accuracy				
				olute
Measuring system	IMS 1000	IMS	1000	IMS 3000
	IMS 3000			
Track position and height 1)	not avail.	+/- 2		+/- 3
Track geometry (versine),				
2 sigma				
= 30 m chord (mm)	+/- 0.7	+/- 0.7		+/- 0.7
■ 300 m chord (mm)	+/- 3	+/- 3		+/- 3
Cross level (cant) (mm)	+/- 0.5	+/- 0.5		+/- 0.5
Gauge (mm)	+/- 0.3	+/- 0.3		+/- 0.3
CP measurement (mm)				
relative to track axis	not avail.	+/-		+/- 3
Measuring frequency				
Track geometry				
3 D track position, cross	100	100		100
level (measurements/sec)				
Gauge (measurements/sec)	10	10		10
Performance				
Typical measuring speed	3500	2500	0	2500
(m/h) ²⁾				
Max. measuring speed (m/h)	5000	4000	0	4000

Environmental specifications				
Working temperatur range	-10°C to +50°C			
Humidity (non-condensing)	< 80 %			
Measurement data (export)				
Supported data interfaces	ASCII			
	DXF			
	LandXML			
	further formats on request			
System approvals				
CE Conformity	EN 61326-1:2013			
	EN 61000-6-2:2005			
	EN 61000-6-4:2007/A1:2011			
	EN 60825-1:2014			
	EN 13848-4			
	Directives 2014/30/EU			
	Directives 2014/35/EU			
	Directives 2011/65/EU			
GRP System FX	Network Rail / London Under-			
approvals from	ground (UK), Deutsche Bahn			
	(DE), SBB (CH), SNCF (FR),			
	ÖBB (AT), RFI (IT), Adif (ES),			
	ProRail (NL), Infrabel (BE)			
Extract of references				
Amberg's railway surveying solutions have proven their high				

performance all over the world. Demanding projects have been successfully realised in e.g. Germany, Austria, Belgium, the Netherlands, Denmark, France, Italy, Spain, Greece, Turkey, Australia, United Kingdom, Saudi Arabia, UAE, Korea, USA, PR China.

¹⁾ Depending on e.g. control point density, control point quality and project conditions.

²⁾ Typical experience, may depend on project conditions.